Type Condition

Berlin, VT

123 Clinical Trials near Berlin, VT

Power is an online platform that helps thousands of patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
This randomized phase III trial studies carboplatin, paclitaxel and gemcitabine hydrochloride when given together with or without bevacizumab after surgery to see how well it works in treating patients with ovarian, epithelial, primary peritoneal, or fallopian tube cancer that has come back. Drugs used in chemotherapy, such as carboplatin, paclitaxel and gemcitabine hydrochloride work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as bevacizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether combination chemotherapy is more effective when given with or without bevacizumab after surgery in treating patients with ovarian, epithelial, primary peritoneal, or fallopian tube cancer.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Sex:Female

1052 Participants Needed

RATIONALE: Wedge resection or segmentectomy may be less invasive types of surgery than lobectomy for non-small cell lung cancer and may have fewer side effects and improve recovery. It is not yet known whether wedge resection or segmentectomy are more effective than lobectomy in treating stage IA non-small cell lung cancer. PURPOSE: This randomized phase III trial is studying different types of surgery to compare how well they work in treating patients with stage IA non-small cell lung cancer.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

701 Participants Needed

This randomized phase III trial studies doxorubicin hydrochloride, cyclophosphamide, and paclitaxel to see how well they work with or without bevacizumab in treating patients with cancer that has spread to the lymph nodes (lymph node-positive) or cancer that has not spread to the lymph nodes but is at high risk for returning (high-risk, lymph node-negative breast cancer). Drugs used in chemotherapy, such as doxorubicin hydrochloride, cyclophosphamide, and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Bevacizumab may also stop the growth of breast cancer by blocking blood flow to the tumor. Giving chemotherapy after surgery may kill any tumor cells that remain after surgery and help prevent the tumor from returning. It is not yet known whether doxorubicin hydrochloride, cyclophosphamide, and paclitaxel are more effective with or without bevacizumab.
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

4994 Participants Needed

RATIONALE: Drugs used in chemotherapy, such as docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Androgens can cause the growth of prostate cancer cells. Antihormone therapy, such as goserelin and leuprolide, may stop the adrenal glands from making androgens. Giving docetaxel and leuprolide or goserelin before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. It is not yet known whether giving docetaxel and leuprolide or goserelin before surgery is more effective than surgery alone in treating patients with prostate cancer. PURPOSE: This randomized phase III trial is studying docetaxel and leuprolide or goserelin to see how well they work when given before surgery compared with surgery alone in treating patients with high-risk localized prostate cancer.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3
Sex:Male

788 Participants Needed

This randomized phase III trial studies lenalidomide to see how well it works compared to a placebo in treating patients with multiple myeloma who are undergoing autologous stem cell transplant. Giving chemotherapy before a peripheral blood stem cell transplant helps kill any cancer cells that are in the body and helps make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow. After treatment, stem cells are collected from the patient's blood and stored. More chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Biological therapies, such as lenalidomide, may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Giving lenalidomide after autologous stem cell transplant may be an effective treatment for multiple myeloma.
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 3

460 Participants Needed

Chemotherapy for Cancer

Berlin Corners, Vermont
This phase III trial studies how well active surveillance help doctors to monitor subjects with low risk germ cell tumors for recurrence after their tumor is removed. When the germ cell tumor has spread outside of the organ in which it developed, it is considered metastatic. Chemotherapy drugs, such as bleomycin, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The trial studies whether carboplatin or cisplatin is the preferred chemotherapy to use in treating metastatic standard risk germ cell tumors.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

1780 Participants Needed

This trial is testing different treatments in patients with advanced rectal cancer to see which one is more effective at shrinking the tumor or stopping its growth, potentially avoiding surgery.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

783 Participants Needed

This phase II trial tests whether the addition of radiation to the primary tumor, typically given with stereotactic ablative radiation therapy (SABR), in combination with standard of care immunotherapy improves outcomes in patients with renal cell cancer that is not recommended for surgery and has spread from where it first started (primary site) to other places in the body (metastatic). Radiation therapy uses high energy photons to kill tumor cells and shrink tumors. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method may kill tumor cells with fewer doses of radiation over a shorter period and cause less damage to normal tissue. Immunotherapy with monoclonal antibodies, such as nivolumab, ipilimumab, avelumab, and pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Axitinib, cabozantinib, and lenvatinib are in a class of medications called antiangiogenic agents. They work by stopping the formation of blood vessels that bring oxygen and nutrients to tumor. This may slow the growth and spread of tumor. Giving SABR in combination with standard of care immunotherapy may help shrink or stabilize the cancer in patients with renal cell cancer.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

240 Participants Needed

This phase II trial compares the usual treatment of radiation therapy alone to using the study drug, relugolix, plus the usual radiation therapy in patients with castration-sensitive prostate cancer that has spread to limited other parts of the body (oligometastatic). Relugolix is in a class of medications called gonadotropin-releasing hormone (GnRH) receptor antagonists. It works by decreasing the amount of testosterone (a male hormone) produced by the body. It may stop the growth of cancer cells that need testosterone to grow. Radiation therapy uses high-energy x rays or protons to kill tumor cells. The addition of relugolix to the radiation may reduce the chance of oligometastatic prostate cancer spreading further.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2
Sex:Male

194 Participants Needed

This phase II trial studies the effect of pembrolizumab alone or in combination with CMP-001 in treating patients with melanoma that can be treated by surgery (operable). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Immunotherapy with CMP-001 may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. The addition of CMP-001 to pembrolizumab could improve the ability of the immune system to shrink tumors and to prevent them from returning.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

60 Participants Needed

This phase II Lung-MAP treatment trial studies the effect of AMG 510 in treating non-squamous non-small cell lung cancer that is stage IV or has come back (recurrent) and has a specific mutation in the KRAS gene, known as KRAS G12C. Mutations in this gene may cause the cancer to grow. AMG 510, a targeted treatment against the KRAS G12C mutation, may help stop the growth of tumor cells.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

116 Participants Needed

This trial uses drugs that boost the immune system to fight advanced melanoma that can't be surgically removed. It aims to see if doctors can safely shorten the treatment period by using imaging tests to guide decisions. Pembrolizumab and ipilimumab are immunotherapy drugs used to treat advanced melanoma, with pembrolizumab approved for younger patients and ipilimumab showing positive results in previous studies.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

150 Participants Needed

This phase II trial studies how well lower-dose chemotherapy plus radiation (chemoradiation) therapy works in comparison to standard-dose chemoradiation in treating patients with early-stage anal cancer. Drugs used in chemotherapy, such as mitomycin, fluorouracil, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy with radiation therapy may kill more tumor cells. This study may help doctors find out if lower-dose chemoradiation is as effective and has fewer side effects than standard-dose chemoradiation, which is the usual approach for treatment of this cancer type.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

252 Participants Needed

This phase II trial compares three chemotherapy regimens consisting of bendamustine, rituximab, high dose cytarabine, and acalabrutinib and studies how well they work in treating patients with newly diagnosed mantle cell lymphoma. Drugs used in chemotherapy, such as bendamustine and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Acalabrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. This study is being done to find out if one the drug combinations of bendamustine, rituximab, high dose cytarabine, and acalabrutinib is better or worse than the usual approach for mantle cell lymphoma.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

360 Participants Needed

Targeted Therapy for Brain Cancer

Berlin Corners, Vermont
This phase II trial studies how well genetic testing works in guiding treatment for patients with solid tumors that have spread to the brain. Several genes have been found to be altered or mutated in brain metastases such as NTRK, ROS1, CDK, PI3K, or KRAS G12C. Medications that target these genes such as abemaciclib, paxalisib, entrectinib and adagrasib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Genetic testing may help doctors tailor treatment for each mutation.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

186 Participants Needed

This phase II trial studies how pembrolizumab works before and after surgery in treating patients with stage III-IV high-risk melanoma. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving pembrolizumab before and after surgery may work better compared to after surgery alone in treating melanoma.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

313 Participants Needed

This phase II trial studies how well radiation therapy with or without apalutamide works in treating patients with prostate cancer that has come back (recurrent). Radiation therapy uses high energy x-ray to kill tumor cells and shrink tumors. Androgen can cause the growth of prostate cancer cells. Drugs, such as apalutamide, may lessen the amount of androgen made by the body. Giving radiation therapy and apalutamide may work better at treating prostate cancer compared to radiation therapy alone.

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Sex:Male

324 Participants Needed

This phase II trial studies nivolumab and ipilimumab in treating patients with rare tumors. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. This trial enrolls participants for the following cohorts based on condition: 1. Epithelial tumors of nasal cavity, sinuses, nasopharynx: A) Squamous cell carcinoma with variants of nasal cavity, sinuses, and nasopharynx and trachea (excluding laryngeal, nasopharyngeal cancer \[NPC\], and squamous cell carcinoma of the head and neck \[SCCHN\]) B) Adenocarcinoma and variants of nasal cavity, sinuses, and nasopharynx (closed to accrual 07/27/2018) 2. Epithelial tumors of major salivary glands (closed to accrual 03/20/2018) 3. Salivary gland type tumors of head and neck, lip, esophagus, stomach, trachea and lung, breast and other location (closed to accrual) 4. Undifferentiated carcinoma of gastrointestinal (GI) tract 5. Adenocarcinoma with variants of small intestine (closed to accrual 05/10/2018) 6. Squamous cell carcinoma with variants of GI tract (stomach small intestine, colon, rectum, pancreas) (closed to accrual 10/17/2018) 7. Fibromixoma and low grade mucinous adenocarcinoma (pseudomixoma peritonei) of the appendix and ovary (closed to accrual 03/20/2018) 8. Rare pancreatic tumors including acinar cell carcinoma, mucinous cystadenocarcinoma or serous cystadenocarcinoma. Pancreatic adenocarcinoma is not eligible (closed to accrual) 9. Intrahepatic cholangiocarcinoma (closed to accrual 03/20/2018) 10. Extrahepatic cholangiocarcinoma and bile duct tumors (closed to accrual 03/20/2018) 11. Sarcomatoid carcinoma of lung 12. Bronchoalveolar carcinoma lung. This condition is now also referred to as adenocarcinoma in situ, minimally invasive adenocarcinoma, lepidic predominant adenocarcinoma, or invasive mucinous adenocarcinoma 13. Non-epithelial tumors of the ovary: A) Germ cell tumor of ovary B) Mullerian mixed tumor and adenosarcoma (closed to accrual 03/30/2018) 14. Trophoblastic tumor: A) Choriocarcinoma (closed to accrual) 15. Transitional cell carcinoma other than that of the renal, pelvis, ureter, or bladder (closed to accrual) 16. Cell tumor of the testes and extragonadal germ tumors: A) Seminoma and testicular sex cord cancer B) Non seminomatous tumor C) Teratoma with malignant transformation (closed to accrual) 17. Epithelial tumors of penis - squamous adenocarcinoma cell carcinoma with variants of penis (closed to accrual) 18. Squamous cell carcinoma variants of the genitourinary (GU) system 19. Spindle cell carcinoma of kidney, pelvis, ureter 20. Adenocarcinoma with variants of GU system (excluding prostate cancer) (closed to accrual 07/27/2018) 21. Odontogenic malignant tumors 22. Pancreatic neuroendocrine tumor (PNET) (formerly named: Endocrine carcinoma of pancreas and digestive tract.) (closed to accrual) 23. Neuroendocrine carcinoma including carcinoid of the lung (closed to accrual 12/19/2017) 24. Pheochromocytoma, malignant (closed to accrual) 25. Paraganglioma (closed to accrual 11/29/2018) 26. Carcinomas of pituitary gland, thyroid gland parathyroid gland and adrenal cortex (closed to accrual) 27. Desmoid tumors 28. Peripheral nerve sheath tumors and NF1-related tumors (closed to accrual 09/19/2018) 29. Malignant giant cell tumors 30. Chordoma (closed to accrual 11/29/2018) 31. Adrenal cortical tumors (closed to accrual 06/27/2018) 32. Tumor of unknown primary (Cancer of Unknown Primary; CuP) (closed to accrual 12/22/2017) 33. Not Otherwise Categorized (NOC) Rare Tumors \[To obtain permission to enroll in the NOC cohort, contact: S1609SC@swog.org\] (closed to accrual 03/15/2019) 34. Adenoid cystic carcinoma (closed to accrual 02/06/2018) 35. Vulvar cancer (closed to accrual) 36. MetaPLASTIC carcinoma (of the breast) (closed to accrual) 37. Gastrointestinal stromal tumor (GIST) (closed to accrual 09/26/2018) 38. Perivascular epithelioid cell tumor (PEComa) 39. Apocrine tumors/extramammary Paget's disease (closed to accrual) 40. Peritoneal mesothelioma 41. Basal cell carcinoma (temporarily closed to accrual 04/29/2020) 42. Clear cell cervical cancer 43. Esthenioneuroblastoma (closed to accrual) 44. Endometrial carcinosarcoma (malignant mixed Mullerian tumors) (closed to accrual) 45. Clear cell endometrial cancer 46. Clear cell ovarian cancer (closed to accrual) 47. Gestational trophoblastic disease (GTD) 48. Gallbladder cancer 49. Small cell carcinoma of the ovary, hypercalcemic type 50. PD-L1 amplified tumors 51. Angiosarcoma 52. High-grade neuroendocrine carcinoma (pancreatic neuroendocrine tumor \[PNET\] should be enrolled in Cohort 22; prostatic neuroendocrine carcinomas should be enrolled into Cohort 53). Small cell lung cancer is not eligible (closed to accrual) 53. Treatment-emergent small-cell neuroendocrine prostate cancer (t-SCNC)
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

818 Participants Needed

This trial studies four drugs to treat patients with worsening meningioma. These drugs work by blocking enzymes that the tumor cells need to grow. The trial focuses on patients whose tumors have specific genetic mutations.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

124 Participants Needed

Targeted Therapy for Cancer

Berlin Corners, Vermont
This phase II MATCH screening and multi-sub-trial studies how well treatment that is directed by genetic testing works in patients with solid tumors, lymphomas, or multiple myelomas that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and does not respond to treatment (refractory). Patients must have progressed following at least one line of standard treatment or for which no agreed upon treatment approach exists. Genetic tests look at the unique genetic material (genes) of patients' tumor cells. Patients with genetic abnormalities (such as mutations, amplifications, or translocations) may benefit more from treatment which targets their tumor's particular genetic abnormality. Identifying these genetic abnormalities first may help doctors plan better treatment for patients with solid tumors, lymphomas, or multiple myeloma.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

6452 Participants Needed

Why Other Patients Applied

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50
This randomized phase II trial studies how well chemotherapy and radiation therapy given with or without metformin hydrochloride works in treating patients with stage III non-small cell lung cancer. Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high-energy x-rays to kill tumor cells and shrink tumors. Metformin hydrochloride may shrink tumors and keep them from coming back. It is not yet known whether chemotherapy and radiation therapy is more effective when given with or without metformin hydrochloride in treating stage III non-small cell lung cancer.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

170 Participants Needed

This randomized phase II trial studies how well dose-escalated photon intensity-modulated radiation therapy (IMRT) or proton beam radiation therapy works compared with standard-dose radiation therapy when given with temozolomide in patients with newly diagnosed glioblastoma. Radiation therapy uses high-energy x-rays and other types of radiation to kill tumor cells and shrink tumors. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs, such as temozolomide, may make tumor cells more sensitive to radiation therapy. It is not yet known whether dose-escalated photon IMRT or proton beam radiation therapy is more effective than standard-dose radiation therapy with temozolomide in treating glioblastoma.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

606 Participants Needed

The purpose of this study is to find out what effects (good and/or bad) treatment with chemotherapy and stem cell transplant compared with chemotherapy alone will have on primary CNS B-cell lymphoma. Currently the best treatment for patients with primary CNS B-cell lymphoma is not known.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

113 Participants Needed

The purpose of this study is to compare the two approaches for monitoring pancreatic cysts. The study doctors want to compare more frequent monitoring vs less frequent monitoring in order to learn which monitoring method leads to better outcome for patients with pancreatic cysts.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased
Age:50 - 75

4606 Participants Needed

This ALCHEMIST trial studies genetic testing in screening patients with stage IB-IIIA non-small cell lung cancer that has been or will be removed by surgery. Studying the genes in a patient's tumor cells may help doctors select the best treatment for patients that have certain genetic changes.

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

8300 Participants Needed

RATIONALE: Estrogen can cause the growth of breast cancer cells. Hormone therapy using letrozole may fight breast cancer by lowering the amount of estrogen the body makes. It is not yet known whether letrozole is more effective than a placebo in treating patients with hormone receptor-positive breast cancer. PURPOSE: This randomized phase III trial is studying letrozole to see how well it works compared with a placebo in treating postmenopausal women who have received hormone therapy for hormone receptor-positive breast cancer.
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Sex:Female

3966 Participants Needed

RATIONALE: Estrogen can stimulate the growth of breast cancer cells. Hormone therapy using triptorelin, exemestane, and tamoxifen may fight breast cancer by blocking the use of estrogen. It is not yet known whether giving triptorelin together with exemestane is more effective than triptorelin and tamoxifen in treating hormone-responsive breast cancer. PURPOSE: This randomized phase III trial is studying triptorelin and exemestane to see how well they work compared to triptorelin and tamoxifen in treating premenopausal women with hormone-responsive breast cancer.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Age:18 - 65
Sex:Female

2672 Participants Needed

RATIONALE: Estrogen can stimulate the growth of breast tumor cells. Ovarian function suppression combined with hormone therapy using tamoxifen or exemestane may fight breast cancer by reducing the production of estrogen. It is not yet known whether suppression of ovarian function plus either tamoxifen or exemestane is more effective than tamoxifen alone in preventing the recurrence of hormone-responsive breast cancer. PURPOSE: This randomized phase III trial studies ovarian suppression with either tamoxifen or exemestane to see how well they work compared to tamoxifen alone in treating premenopausal women who have undergone surgery for hormone-responsive breast cancer.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Age:18 - 65
Sex:Female

3066 Participants Needed

This trial is testing how well two cancer-fighting drugs work together, and whether adding a third drug makes them more effective in treating patients with advanced biliary tract cancers. The drugs aim to kill cancer cells, stop them from dividing, or prevent them from spreading.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting

452 Participants Needed

This randomized phase III trial studies chemotherapy and bevacizumab to see how well they work compared to chemotherapy alone in treating patients with stage IB, stage II, or stage IIIA non-small cell lung cancer that was removed by surgery. Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Bevacizumab also may stop the growth of non-small cell lung cancer by blocking the growth of new blood vessels necessary for tumor growth. It is not yet known whether chemotherapy is more effective with or without bevacizumab in treating non-small cell lung cancer.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting

1501 Participants Needed

Know someone looking for new options? Spread the word

Learn More About Power

Why We Started Power

We started Power when my dad was diagnosed with multiple myeloma, and I struggled to help him access the latest immunotherapy. Hopefully Power makes it simpler for you to explore promising new treatments, during what is probably a difficult time.

Bask
Bask GillCEO at Power
Learn More About Trials

Frequently Asked Questions

How much do clinical trials in Berlin, VT pay?

Each trial will compensate patients a different amount, but $50-100 for each visit is a fairly common range for Phase 2–4 trials (Phase 1 trials often pay substantially more). Further, most trials will cover the costs of a travel to-and-from the clinic.

How do clinical trials in Berlin, VT work?

After a researcher reviews your profile, they may choose to invite you in to a screening appointment, where they'll determine if you meet 100% of the eligibility requirements. If you do, you'll be sorted into one of the treatment groups, and receive your study drug. For some trials, there is a chance you'll receive a placebo. Across trials in Berlin, VT 30% of clinical trials have a placebo. Typically, you'll be required to check-in with the clinic every month or so. The average trial length in Berlin, VT is 12 months.

How do I participate in a study as a "healthy volunteer"?

Not all studies recruit healthy volunteers: usually, Phase 1 studies do. Participating as a healthy volunteer means you will go to a research facility in Berlin, VT several times over a few days or weeks to receive a dose of either the test treatment or a "placebo," which is a harmless substance that helps researchers compare results. You will have routine tests during these visits, and you'll be compensated for your time and travel, with the number of appointments and details varying by study.

What does the "phase" of a clinical trial mean?

The phase of a trial reveals what stage the drug is in to get approval for a specific condition. Phase 1 trials are the trials to collect safety data in humans. Phase 2 trials are those where the drug has some data showing safety in humans, but where further human data is needed on drug effectiveness. Phase 3 trials are in the final step before approval. The drug already has data showing both safety and effectiveness. As a general rule, Phase 3 trials are more promising than Phase 2, and Phase 2 trials are more promising than phase 1.

Do I need to be insured to participate in a medical study in Berlin, VT?

Clinical trials are almost always free to participants, and so do not require insurance. The only exception here are trials focused on cancer, because only a small part of the typical treatment plan is actually experimental. For these cancer trials, participants typically need insurance to cover all the non-experimental components.

What are the newest clinical trials in Berlin, VT?

Most recently, we added Higher Dose Radiation Therapy for Pancreatic Cancer, Apixaban for Cancer and Blinatumomab + Dasatinib/Imatinib for Acute Lymphoblastic Leukemia to the Power online platform.

Unbiased ResultsWe believe in providing patients with all the options.
Your Data Stays Your DataWe only share your information with the clinical trials you're trying to access.
Verified Trials OnlyAll of our trials are run by licensed doctors, researchers, and healthcare companies.
Terms of Service·Privacy Policy·Cookies·Security