Glioblastoma

San Diego, CA

94 Glioblastoma Trials near San Diego, CA

Power is an online platform that helps thousands of Glioblastoma patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication

NanO2 for Glioblastoma

Orange, California
This trial is testing a new treatment that delivers more oxygen to tumors. It aims to help patients with a specific type of brain cancer by making radiation therapy more effective. By increasing oxygen levels in the tumor, the treatment helps radiation work better at killing cancer cells.

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

87 Participants Needed

This phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations compared to radiation therapy and temozolomide alone.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:3 - 25

38 Participants Needed

Multicenter, open-label, single-arm Phase 1/2 study on the safety and efficacy of the combination of NMS-03305293 and temozolomide (TMZ) in adult patients with diffuse gliomas (Phase 1) and isocitrate dehydrogenase (IDH) wild type glioblastoma (Phase 2) at first relapse.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

150 Participants Needed

This randomized phase II trial studies how well dose-escalated photon intensity-modulated radiation therapy (IMRT) or proton beam radiation therapy works compared with standard-dose radiation therapy when given with temozolomide in patients with newly diagnosed glioblastoma. Radiation therapy uses high-energy x-rays and other types of radiation to kill tumor cells and shrink tumors. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs, such as temozolomide, may make tumor cells more sensitive to radiation therapy. It is not yet known whether dose-escalated photon IMRT or proton beam radiation therapy is more effective than standard-dose radiation therapy with temozolomide in treating glioblastoma.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

606 Participants Needed

This phase II clinical trial studies how well ERC1671 plus Granulocyte-macrophage colony-stimulating factor (GM-CSF) plus Cyclophosphamide with Bevacizumab works compared to Placebo Injection plus Placebo Pill with Bevacizumab in treating patients with recurrent/progressive, bevacizumab naïve glioblastoma multiforme and gliosarcoma (World Health Organization (WHO) grade IV malignant gliomas, GBM).

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

84 Participants Needed

This phase II trial studies how well dynamic susceptibility contrast-enhanced magnetic resonance imaging (DSC-MRI) works in measuring relative cerebral blood volume (rCBV) for early response to bevacizumab in patients with glioblastoma that has come back. DSC-MRI may help evaluate changes in the blood vessels within the cancer to determine a patient?s response to treatment.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

146 Participants Needed

APL-101 for Lung Cancer

Riverside, California
This trial is testing APL-101, a new drug, on patients with specific genetic changes in their cancer. These patients often don't respond to typical treatments. The drug aims to block a protein that helps cancer cells grow and spread.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

497 Participants Needed

This phase I clinical trial studies the side effects and best dose of AZD1390 and to see how well it works when given together with radiation therapy for the treatment of pediatric patients with high grade glioma, diffuse midline glioma or diffuse intrinsic pontine glioma. AZD1390 is in a class of medications called kinase inhibitors. It works by blocking the signals that cause cancer cells to multiply. This helps to stop the spread of cancer cells. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Giving AZD1390 with radiation may be safe, tolerable, and/or effective in treating pediatric patients with high grade glioma, diffuse midline glioma or diffuse intrinsic pontine glioma.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1
Age:12 - 22

54 Participants Needed

This phase I trial studies the side effects and best dose of selinexor in treating younger patients with solid tumors or central nervous system (CNS) tumors that have come back (recurrent) or do not respond to treatment (refractory). Drugs used in chemotherapy, such as selinexor, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Age:12 - 21

59 Participants Needed

LP-184 for Solid Tumors

Los Alamitos, California
The primary objective of this study is to evaluate the safety, tolerability, MTD and RP2D of LP-184 in patients with advanced solid tumors who have relapsed from or are refractory to standard therapy or for whom no standard therapy is available. The secondary objectives are to characterize the PK of LP-184 and its metabolites in plasma and assess clinical activity of LP-184. Participants will receive LP-184 infusion during Day 1 and Day 8 of each 21-day cycle, for a minimum of two cycles. Patients will be monitored for safety, PK, and clinical activity
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

175 Participants Needed

This cluster-randomized comparative effectiveness trial compares a technology-based supportive cancer care (SCC) approach with a redesigned team-based supportive cancer care (SCC) approach.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Unphased

2996 Participants Needed

This phase III trial compares pH weighted chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI)-based surgical resections to standard of care surgical resections for the treatment of patients with glioblastoma. Standard of care therapy for glioblastoma is surgery to remove tumor tissue that enhances on standard MRI imaging, however, it has been shown that significant tumor burden exists in the region around the tumor tissue that does not enhance with standard MRI. MRI is a procedure in which radio waves and a powerful magnet linked to a computer are used to create detailed pictures of areas inside the body. These pictures can show the difference between normal and tumor tissue. CEST MRI is a technique that uses differences in the tissue environment, like protein concentration or intracellular pH, to generate contrast differences. CEST MRI may identify tumor tissue that does not enhance with standard of care MRI. PH weighted CEST MRI based surgical resection may be more effective compared to standard of care surgical resection in treating patients with glioblastoma.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Not Yet Recruiting
Trial Phase:Phase 3

60 Participants Needed

This trial tests if adding GammaTile radiation therapy to standard treatment can improve outcomes for patients with newly diagnosed GBM. GammaTile delivers quick, direct radiation to the tumor, which may help control the tumor better and improve survival rates.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 4

61 Participants Needed

Perillyl Alcohol for Glioblastoma

Los Angeles, California
This trial is testing NEO100, a purified form of perillyl alcohol, to treat aggressive brain tumors in patients whose cancer has returned or not responded to other treatments. The treatment is given through the nose regularly and may help slow down tumor growth. Perillyl alcohol (POH) is a naturally occurring substance with properties that may inhibit tumor growth, and NEO100 is a highly purified version of POH currently being tested for glioblastoma treatment.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1, 2

49 Participants Needed

The goal of this clinical trial is to learn if DOC1021 + pIFN alongside standard of care (SOC) will improve survival in adult patients newly diagnosed with glioblastoma (IDH-wt). It will also evaluate the safety of DOC1021 + pIFN. Researchers will compare DOC1021 dendritic cell immunotherapy regimen added to SOC compared to SOC treatment alone. Participants in the DOC1021 + pIFN + SOC arm will: * Take filgrastim subcutaneously x 5 doses and subsequently undergo a leukapheresis collection * Undergo ultrasound guided perinodal DOC1021 injections every 2 weeks for a total of 3 doses * Receive subcutaneous pIFN injections weekly for a total of 6 doses in parallel with the DOC1021 injections Both arms of the trial will: \- Visit the clinic regularly to assess quality of life, symptoms, medication use, imaging, bloodwork, and to receive SOC treatment with surgery, temozolomide chemotherapy and radiation
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

180 Participants Needed

Phase 1/2 trial to evaluate safety, immunogenicity and preliminary efficacy of INO-5401 and INO-9012 in combination with cemiplimab (REGN2810), with radiation and chemotherapy, in subjects with newly-diagnosed glioblastoma (GBM).
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

52 Participants Needed

ACP-196 for Glioblastoma

Los Angeles, California
A Phase 1b/2, Multicenter, Open-Label Study of ACP-196 in Subjects with Recurrent Glioblastoma Multiforme (GBM)
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

24 Participants Needed

Activated T Cells for Brain Cancer

Los Angeles, California
This trial is testing a treatment where a patient's own immune cells are enhanced to better fight cancer. It aims to find out if this treatment is safe and how well it works for cancer patients.
No Placebo Group

Trial Details

Trial Status:Withdrawn
Trial Phase:Phase 1
Current standard of care therapy and all FDA approved adjuvant therapy for glioblastoma continue to provide less than 12 months of progression free survival (PFS) and less than 24 months of overall survival (OS). There is an extreme need for any novel therapy against glioblastoma that increases progression free survival and overall survival in patients diagnosed with this invasive form of cancer. A significant reason for such a poor prognosis is the infiltrative nature of this tumor in non-enhancing regions (NE) beyond the central contrast-enhancing (CE) portion of tumor, which is difficult to visualize and treat with surgical, medical, or radiotherapeutic means. Since tumor cells exhibit abnormal metabolic behavior leading to extracellular acidification, we theorize a newly developed pH-sensitive MRI technique called amine chemical exchange saturation transfer echoplanar imaging (CEST-EPI) may identify infiltrating NE tumor beyond what is clear on standard MRI with gadolinium contrast. This phase I safety study will use use intraoperative CEST-EPI guided resections in glioblastoma at increasing distances from areas of CE tumor to test whether this technique is safe and can remove additional areas of infiltrative NE tumor. The primary objective of this study is to assess the safety of pH-sensitive amine CEST-EPI guided resections for glioblastoma.The secondary objectives of this study include: 1. A preliminary efficacy analysis of CEST-EPI guided resections in extending progression free and overall survival. 2. To confirm that resected tissue obtained from pH-sensitive amine CEST-EPI guided resections contain infiltrating NE tumor. The primary endpoint for this study will be safety of resecting "CEST positive", acidic regions within T2 hyperintense regions of glioblastoma thought to contain active NE tumor at increasing distances from contrast enhancing tumor with development of a recommended maximal tolerated resection. 1. At the maximal tolerated resection, a preliminary efficacy study with endpoints of progression free survival (as defined by RANO Resect 2.0) 1 and overall survival. 2. Quantitation of infilitrating tumor burden on CEST-EPI resected tissue using immunohistochemical staining. 12 patients up to 24 patients based on resection limiting toxicities with potential expansion of up to 16 patients at the maximum tolerated resection. Inclusion Criteria: 1. Must be able to provide written informed consent 2. Male or female \> 18 years of age 3. Karnofsky Performance Scale (KPS) \> 70 (indicating good performance status). 4. Individuals with suspected, newly diagnosed or recurrent IDH wild type WHO IV glioblastoma (intraxial, expansile contrast-enhancing mass without evidence of metastatic disease. This will be reviewed by UCLA neuroradiology to only include patients with high likelihood of GBM) Exclusion Criteria: 1. Pediatric patients 2. Diagnostic uncertainty (reviewed by UCLA neuroradiology history extracranial malignancy or autoimmune disease) 3. Medical conditions that make patients a poor candidate for anesthesia and/or surgery (decision for surgery will follow standard pre-operative clearance guidelines and will not differ for this specific study from standard of care treatment plan) 4. Involvement of eloquent areas (as defined by MRI signal clearly involving areas that would lead to a qualifying neurologic deficit as defined in surgical limiting toxicity - this will specifically include: 1) primary motor cortex, 2) primary sensory cortex, 3) sensorimotor fibers as defined on pre-operative diffusion tensor imaging, 4) primary language areas (Broca, Wernicke), 5) arcuate fasiculus as defined on pre-operative diffusion tensor imaging Pre-operative: Standard of care pre-operative MRI including perfusion and pH-weighted amine CEST-EPI (which will add up to 15 minutes of scan time) for a single pre-operative exam prior to surgery. Surgery: 1 day (subjects to be admitted to the hospital) Follow-up: inpatient stay (1-3 days), 2 week clinical assessment (outpatient post-op clinic visit). MRI and clinical assessment at 4 weeks (end of resection limited toxicity window). Following this, there will be standard of care follow up with MRI and clinical assessment starting at 8 weeks +/- 4 weeks (per RANO 2.0). 1 Total study duration for recruitment, enrollment, and study completion of all subjects is up to 2 years. Single-arm, surgical resection escalation safety trial with a preliminary efficacy study at the maximal tolerated resection This safety evaluation will mimic a phase 1 dose escalation safety study using a rule based approach on based on a i3+3 design.2 Using standard of care resection of contrast enhancement as the baseline, we will begin with 3 subjects with maximal resection + "CEST positive" areas 0.7 cm from the contrast enhancing boundary within areas of T2 hyperintensity. If there is not \> 1 pre-determined resection limiting toxicity (RLT, defined below) in this cohort, the r
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

18 Participants Needed

[177Lu]Lu-NeoB for Glioblastoma

Los Angeles, California
This study will investigate different doses of \[177Lu\]Lu-NeoB in combination with RT and TMZ in participants with newly diagnosed glioblastoma, with methylated or unmethylated promoter, to assess the safety and efficacy of \[177Lu\]Lu-NeoB in combination with the SoC and in recurrent glioblastoma as single agent, to identify the recommended dose and to also explore the safety of the PET imaging agent \[68Ga\]Ga-NeoB and characterize its uptake in the tumor area.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

48 Participants Needed

Why Other Patients Applied

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"As a healthy volunteer, I like to participate in as many trials as I'm able to. It's a good way to help research and earn money."

IZ
Healthy Volunteer PatientAge: 38

"I've tried several different SSRIs over the past 23 years with no luck. Some of these new treatments seem interesting... haven't tried anything like them before. I really hope that one could work."

ZS
Depression PatientAge: 51

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31
This phase I trial studies the side effects and how well IL13Ralpha2-CAR T cells work when given alone or together with nivolumab and ipilimumab in treating patients with glioblastoma that has come back (recurrent) or does not respond to treatment (refractory). Biological therapies, such as IL13Ralpha2-CAR T cells, use substances made from living organisms that may attack specific glioma cells and stop them from growing or kill them. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether giving IL13Ralpha2-CAR T cells and nivolumab together may work better in treating patients with glioblastoma.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

60 Participants Needed

This phase I trial studies the side effects and best dose of memory-enriched T cells in treating patients with grade II-IV glioma that has come back (recurrent) or does not respond to treatment (refractory). Memory enriched T cells such as HER2(EQ)BBζ/CD19t+ T cells may enter and express its genes in immune cells. Immune cells can be engineered to kill glioma cells in the laboratory by inserting a piece of deoxyribonucleic acid (DNA) into the immune cells that allows them to recognize glioma cells. A vector called lentivirus is used to carry the piece of DNA into the immune cell. It is not known whether these immune cells will kill glioma tumor cells when given to patients.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

29 Participants Needed

This phase I trial studies the side effects and best dose of genetically modified T-cell immunotherapy in treating patients with malignant glioma that has come back (recurrent) or has not responded to therapy (refractory). A T cell is a type of immune cell that can recognize and kill abnormal cells in the body. T cells are taken from the patient's blood and a modified gene is placed into them in the laboratory and this may help them recognize and kill glioma cells. Genetically modified T-cells may also help the body build an immune response against the tumor cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1
Age:12 - 75

65 Participants Needed

RO7428731 for Glioblastoma

Los Angeles, California
This trial tests a new drug, RO7428731, for safety and effectiveness in patients with a specific type of brain cancer (glioblastoma) that has a particular mutation. The drug works by targeting and binding to the mutated cancer cells to stop their growth. This mutation is common in glioblastoma and makes the cancer grow faster and resist standard treatments.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

36 Participants Needed

Enrolled subjects will be placed on a 16-week ketogenic diet (subject specific as prescribed by RD) while receiving standard of care cancer treatment (Radiation + Temozolomide). Study dietitians will create personalized meal plans for each patient with the goal of achieving and maintaining protocol defined metabolic ketosis. Subjects will be monitored for safety, nutrition, quality of life, and standard of care tumor assessments over the course of the study.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

21 Participants Needed

Navtemadlin for Brain Cancer

Los Angeles, California
This phase I trial studies the side effects and best dose of navtemadlin in treating patients with glioblastoma (brain cancer) that is newly diagnosed or has come back (recurrent). Navtemadlin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

86 Participants Needed

This trial tests the safety and best dose of adavosertib combined with radiation and temozolomide for treating glioblastoma. Adavosertib blocks enzymes needed for tumor growth, while radiation and temozolomide kill cancer cells and stop them from growing. The study aims to find the most effective dose and understand how well this combination works for patients with newly diagnosed or recurrent glioblastoma.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting

74 Participants Needed

ERAS-801 for Glioblastoma

Los Angeles, California
This phase Ib trial tests the safety and side effects of ERAS-801 in treating patients with isocitrate dehydrogenase (IDH) wildtype, epidermal growth factor receptor (EGFR) amplified or mutated grade IV glioblastoma or astrocytoma that can be removed by surgery (resectable) and that is growing, spreading, or getting worse (progressive) or that has come back after a period of improvement (recurrent). Glioblastoma is the most common brain cancer in adults and survival rates remain poor despite treatment including surgery, radiation and chemotherapy. EGFR is a protein found on the surface of some cells, to which epidermal growth factor binds, causing the cells to divide. It is found at abnormally high levels on the surface of many types of tumor cells, so these cells may divide excessively in the presence of epidermal growth factor. ERAS-801, an EGFR inhibitor that can penetrate the central nervous system, binds to the tumor cells that express EGFR and may help shrink or slow the growth of the tumor cells.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

10 Participants Needed

This phase I trial tests the safety, side effects and best dose of TGFβR2KO/IL13Rα2 chimeric antigen receptor (CAR) T-cells given within the skull (intracranial) in treating patients with glioblastoma or IDH-mutant grade 3 or 4 astrocytoma that has come back after a period of improvement (recurrent) or that is growing, spreading, or getting worse (progressive). CAR T-cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack tumor cells. T cells are taken from a patient's blood. When the cells are taken from the patient's own blood, it is known as autologous. Then the gene for special receptors that bind to a certain proteins on the patient's tumor cells are added to the T cells in the laboratory. The special receptors are called CAR. Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain tumors. Giving TGFβR2KO/IL13Rα2 CAR T cells may be safe, tolerable, and/or effective in treating patients with recurrent or progressive glioblastoma or grade 3 or 4 IDH-mutant astrocytoma.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

27 Participants Needed

This phase I trial studies the side effects and best dose of chimeric antigen receptor (CAR) T cells with a chlorotoxin tumor-targeting domain in treating patients with MPP2+ glioblastoma that has come back (recurrent) or that is growing, spreading, or getting worse (progressive). Vaccines made from a gene-modified virus may help the body build an effective immune response to kill tumor cells.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1

19 Participants Needed

Know someone looking for new options? Spread the word