Glioblastoma

Kansas City, MO

22 Glioblastoma Trials near Kansas City, MO

Power is an online platform that helps thousands of Glioblastoma patients discover FDA-reviewed trials every day. Every trial we feature meets safety and ethical standards, giving patients an easy way to discover promising new treatments in the research stage.

Learn More About Power
No Placebo
Highly Paid
Stay on Current Meds
Pivotal Trials (Near Approval)
Breakthrough Medication
The goal of this Phase 3 clinical trial is to compare the efficacy of niraparib versus temozolomide (TMZ) in adult participants with newly-diagnosed, MGMT unmethylated glioblastoma multiforme (GBM). The main questions it aims to answer are: Does niraparib improve progression-free survival (PFS) compared to TMZ? Does niraparib improve overall survival (OS) compared to TMZ? Participants will be randomly assigned to one of two treatment arms: niraparib or TMZ. * study drug (Niraparib) or * comparator drug (Temozolomide - which is the standard approved treatment for MGMT unmethylated glioblastoma). The study medication will be taken daily while receiving standard of care radiation therapy (RT) for 6-7 weeks. Participants may continue to take the niraparib or TMZ adjuvantly as long as the cancer does not get worse or completion of 6 cycles of treatment (TMZ). A total of 450 participants will be enrolled in the study. Participants' tasks will include: * Complete study visits as scheduled * Complete a diary to record study medication
No Placebo Group
Prior Safety Data
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

450 Participants Needed

This randomized phase II/III trial studies how well temozolomide and veliparib work compared to temozolomide alone in treating patients with newly diagnosed glioblastoma multiforme. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. It is not yet known whether temozolomide is more effective with or without veliparib in treating glioblastoma multiforme.
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2, 3

447 Participants Needed

This is to study if neoadjuvant atezolizumab therapy is beneficial for patients with recurrent glioblastoma and a low mutational burden.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

80 Participants Needed

This trial tests a combination of tocilizumab, atezolizumab, and precise radiation therapy in patients with recurrent glioblastoma. Tocilizumab reduces inflammation, atezolizumab boosts the immune system, and the radiation targets the tumor. The goal is to make the tumor more responsive to treatment and improve patient outcomes.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

59 Participants Needed

This trial studies how well dabrafenib and trametinib work after radiation therapy in children and young adults with a specific type of brain tumor. These drugs help stop tumor growth by blocking signals that tell the cells to multiply. Dabrafenib has been developed and tested extensively for a specific type of skin cancer, showing effectiveness both alone and when used with trametinib.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:3 - 25

58 Participants Needed

NanO2 for Glioblastoma

Kansas City, Missouri
This trial is testing a new treatment that delivers more oxygen to tumors. It aims to help patients with a specific type of brain cancer by making radiation therapy more effective. By increasing oxygen levels in the tumor, the treatment helps radiation work better at killing cancer cells.

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

87 Participants Needed

This phase II trial studies how well veliparib, radiation therapy, and temozolomide work in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations. Poly adenosine diphosphate (ADP) ribose polymerases (PARPs) are proteins that help repair DNA mutations. PARP inhibitors, such as veliparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib, radiation therapy, and temozolomide may work better in treating patients with newly diagnosed malignant glioma without H3 K27M or BRAFV600 mutations compared to radiation therapy and temozolomide alone.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2
Age:3 - 25

38 Participants Needed

Olaparib for Advanced Cancer

North Kansas City, Missouri
This phase II trial studies how well olaparib works in treating patients with glioma, cholangiocarcinoma, or solid tumors with IDH1 or IDH2 mutations that has spread from where it first started (primary site) to other places in the body (metastatic) and that does not respond to treatment (refractory). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

89 Participants Needed

This randomized phase II trial studies how well dose-escalated photon intensity-modulated radiation therapy (IMRT) or proton beam radiation therapy works compared with standard-dose radiation therapy when given with temozolomide in patients with newly diagnosed glioblastoma. Radiation therapy uses high-energy x-rays and other types of radiation to kill tumor cells and shrink tumors. Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. Drugs, such as temozolomide, may make tumor cells more sensitive to radiation therapy. It is not yet known whether dose-escalated photon IMRT or proton beam radiation therapy is more effective than standard-dose radiation therapy with temozolomide in treating glioblastoma.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

606 Participants Needed

This phase I trial tests the safety, side effects, and best dose of triapine in combination with radiation therapy in treating patients with glioblastoma or astrocytoma that has come back after a period of improvement (recurrent). Triapine may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Giving triapine in combination with radiation therapy may be safe, tolerable, and/or effective in treating patients with recurrent glioblastoma or astrocytoma.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 1

30 Participants Needed

To test the effectiveness and safety of Optune® given concomitantly with radiation therapy (RT) and temozolomide (TMZ) in newly diagnosed GBM patients, compared to radiation therapy and temozolomide alone. In both arms, Optune® and maintenance temozolomide are continued following radiation therapy.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Unphased

981 Participants Needed

This trial tests BMX-001, an injectable drug, added to standard radiation and chemotherapy for newly diagnosed aggressive brain cancer patients. The goal is to see if BMX-001 can improve survival and protect brain function.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting

160 Participants Needed

This phase III trial compares the effect of adding lomustine to standard chemotherapy with temozolomide and radiation therapy versus temozolomide and radiation therapy alone in shrinking or stabilizing newly diagnosed MGMT methylated glioblastoma. MGMT methylated tumors are more likely to respond to temozolomide chemotherapy. Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill tumor cells and slow down or stop tumor growth. Lomustine is a chemotherapy drug and in a class of medications called alkylating agents. It damages the cell's DNA and may kill tumor cells. Radiation therapy uses high energy x-ray photons to kill tumor cells and shrink tumors. Adding lomustine to standard chemotherapy with temozolomide and radiation therapy may shrink or stabilize glioblastoma.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 3

306 Participants Needed

This phase II trial compares the safety, side effects and effectiveness of anti-lag-3 (relatlimab) and anti-PD-1 blockade (nivolumab) to standard of care lomustine for the treatment of patients with glioblastoma that has come back after a period of improvement (recurrent). Relatlimab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the tumor, and may interfere with the ability of tumor cells to grow and spread. Lomustine is a chemotherapy drug and in a class of medications called alkylating agents. It damages the cell's deoxyribonucleic acid and may kill tumor cells. Giving relatlimab and nivolumab may be safe, tolerable, and/or effective compared to standard of care lomustine in treating patients with recurrent glioblastoma.
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

184 Participants Needed

Safusidenib for Brain Cancer

Kansas City, Kansas
This trial is testing a new oral medication called safusidenib for patients with certain types of brain tumors that have not responded to other treatments. The drug works by targeting a specific gene mutation to slow down tumor growth. The study will evaluate the safety and effectiveness of different doses of the medication.

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

125 Participants Needed

Berubicin for Glioblastoma

Kansas City, Missouri
This is an open-label, multicenter, randomized, parallel, 2-arm, efficacy and safety study. Patients with GBM after failure of standard first line therapy will be randomized in a 2:1 ratio to receive berubicin or lomustine for the evaluation of OS. Additional endpoints will include response and progression outcomes evaluated by a blinded central reviewer for each patient according to RANO criteria. A pre-planned, non-binding futility analysis will be performed after approximately 30 to 50% of all planned patients have completed the primary endpoint at 6 months. This review will include additional evaluation of safety as well as secondary efficacy endpoints. Enrollment will not be paused during this interim analysis.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

210 Participants Needed

BDTX-1535-101 is an open-label, Phase 1 dose escalation and Phase 2 multiple cohort study designed to evaluate the safety, pharmacokinetics (PK), optimal dosage, central nervous system (CNS) activity, and antitumor activity of silevertinib (BDTX-1535). The study population comprises adults with either advanced/metastatic non-small cell lung cancer (NSCLC) with non-classical or acquired epidermal growth factor receptor (EGFR) resistance (EGFR C797S) mutations with or without CNS disease (in Phase 1 and Phase 2), or glioblastoma (GBM) expressing EGFR alterations (Phase 1 only). All patients will self-administer silevertinib (BDTX-1535) monotherapy by mouth in 21-day cycles. Phase 1 enrollment is now complete. Phase 2 is currently ongoing.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 1, 2

200 Participants Needed

APL-101 for Lung Cancer

Kansas City, Missouri
This trial is testing APL-101, a new drug, on patients with specific genetic changes in their cancer. These patients often don't respond to typical treatments. The drug aims to block a protein that helps cancer cells grow and spread.
No Placebo Group

Trial Details

Trial Status:Recruiting
Trial Phase:Phase 2

497 Participants Needed

This randomized study is designed to compare the combination of TVI-Brain-1 immunotherapy and standard therapy compared to standard therapy alone as a treatment for newly diagnosed MGMT unmethylated glioblastoma patients. The patients' own cancer cells collected after surgery are combined into a vaccine to produce an immune response that significantly increases the number of cancer neoantigen-specific effector T cell precursors in the patient's body. These cancer neoantigen-specific T cells are harvested from the blood, subsequently stimulated and expanded, and infused back into the patient.
No Placebo Group
Pivotal Trial (Near Approval)

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2, 3

120 Participants Needed

This study is to determine if an oral drug called Ramipril can lower the chance of memory loss in patients with glioblastoma getting chemoradiation. Patients will take Ramipril during chemoradiation and continue until 4 months post-treatment. Memory loss will be assessed using several neurocognitive tests throughout the duration of the study.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting

75 Participants Needed

Why Other Patients Applied

"I changed my diet in 2020 and I’ve lost 95 pounds from my highest weight (283). I am 5’3”, female, and now 188. I still have a 33 BMI. I've been doing research on alternative approaches to continue my progress, which brought me here to consider clinical trials."

WR
Obesity PatientAge: 58

"My orthopedist recommended a half replacement of my right knee. I have had both hips replaced. Currently have arthritis in knee, shoulder, and thumb. I want to avoid surgery, and I'm open-minded about trying a trial before using surgery as a last resort."

HZ
Arthritis PatientAge: 78

"I was diagnosed with stage 4 pancreatic cancer three months ago, metastatic to my liver, and I have been receiving and responding well to chemotherapy. My blood work revealed that my tumor markers have gone from 2600 in the beginning to 173 as of now, even with the delay in treatment, they are not going up. CT Scans reveal they have been shrinking as well. However, chemo is seriously deteriorating my body. I have 4 more treatments to go in this 12 treatment cycle. I am just interested in learning about my other options, if any are available to me."

ID
Pancreatic Cancer PatientAge: 40

"I have dealt with voice and vocal fold issues related to paralysis for over 12 years. This problem has negatively impacted virtually every facet of my life. I am an otherwise healthy 48 year old married father of 3 living. My youngest daughter is 12 and has never heard my real voice. I am now having breathing issues related to the paralysis as well as trouble swallowing some liquids. In my research I have seen some recent trials focused on helping people like me."

AG
Paralysis PatientAge: 50

"I've been struggling with ADHD and anxiety since I was 9 years old. I'm currently 30. I really don't like how numb the medications make me feel. And especially now, that I've lost my grandma and my aunt 8 days apart, my anxiety has been even worse. So I'm trying to find something new."

FF
ADHD PatientAge: 31
This trial tests if adding GammaTile radiation therapy to standard treatment can improve outcomes for patients with newly diagnosed GBM. GammaTile delivers quick, direct radiation to the tumor, which may help control the tumor better and improve survival rates.
No Placebo Group

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 4

61 Participants Needed

Immunotherapy for Brain Tumor

Saint Joseph, Missouri
This phase II trial studies the effect of immunotherapy drugs (ipilimumab and nivolumab) in treating patients with glioma that has come back (recurrent) and carries a high number of mutations (mutational burden). Cancer is caused by changes (mutations) to genes that control the way cells function. Tumors with high number of mutations may respond well to immunotherapy. Immunotherapy with monoclonal antibodies such as ipilimumab and nivolumab may help the body's immune system attack the cancer and may interfere with the ability of tumor cells to grow and spread. Giving ipilimumab and nivolumab may lower the chance of recurrent glioblastoma with high number of mutations from growing or spreading compared to usual care (surgery or chemotherapy).
No Placebo Group
Prior Safety Data

Trial Details

Trial Status:Active Not Recruiting
Trial Phase:Phase 2

37 Participants Needed

Know someone looking for new options? Spread the word